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S u m m a r y  

The lifetime distribution is very important in reliability studies. The shape of lifetime 
distribution can vary considerably; therefore, it frequently cannot to approximated by simple 
distribution functions. This article is connected with the problem of finding of lifetime distribution 
with a unimodal failure rate function. For this purpose, the mixture of two distributions has been 
considered.  

We show that a unimodal failure rate function can be obtained as a failure rate function of 
the mixture of an exponential and Rayleigh distributions. The numerical examples are also 
provided to illustrate the practical impact of this approach. 
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1. Introduction 

An important topic in the field of lifetime data analysis is to select the most 
appropriate lifetime distribution. This distribution describes the time to failure 
of a component, subsystem, or system. Some number of the failures are results 
from natural wear of the machines, while other failures may be caused by 
inefficient repair of the previous failures. They result from incorrect 
organisation of the repairs. The analysis of the results of the operation and 
maintenance investigations regarding the moments the failures occur prove that 
the set of the failures may be divided into two subsets of the primary and 
secondary failures. The population of times to failure is heterogeneous. The 
resulting population of lifetimes can be described using the statistical concept of 
a mixture. 

The analysis of the empirical data (the length of the time intervals between 
the failures) indicates that it is reasonable to describe the probability distribution 
of the correct work times with density function f(t) as follows: 

 
                                              f(t) = p λ e–λ t + (1 – p) f2(t) (1) 

 
where λ > 0, 0 < p < 1 and f2(t) is unknown density. This model was proposed in 
paper [17]. The density f(t) is a mixture of an exponential distribution and a 
distribution with density function f2(t).  

 
In this paper, we study the mixture of an exponential distribution and a 

Rayleigh distribution. A purpose of this paper is construction of a mixture of 
distribution with an unimodal failure rate function. The distribution with a non-
monotonic failure rate function is considered in reliability theory. The 
distribution with a bathtub shaped failure function (BFR) belongs to such a 
situation. In reliability theory, the models with BFR are very useful. A brief 
discussion and summary for such a distribution is given in [4] and [14]. 
However, there are many known examples of the application of distribution with 
upside-down bathtub shaped (unimodal) failure rate function (UBFR). In a 
particular case, the unimodal failure rate function is used in [15] and [16] to 
analyse the lifetime of a biological population, [1] medical data, [12] data of 
motor bus failure, [4] and [6] optimal burn decision, [10] ageing property in 
reliability, and [2] social mobility. One way of generating a distribution with a 
non-monotone failure rate function is the mixing of standard distributions. It is 
commonly known that a mixture of distributions with a decreasing failure rate 
function (DFR) has a decreasing failure rate function (Prochan [13]). In [9], 
there has been given the condition under which the mixture of an exponential 
distribution and an IFR (increasing failure rate function) is a DFR distribution. 
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Mixture gamma distribution and exponential distribution studies are shown 
in [7]. Klutke et al. [11] has studied the mixture of Weibull distributions and 
suggest that the this mixture can be a distribution with a unimodal failure rate 
function. However, in [19], the failure rate function has a decreasing initial 
period. The mixture of the two Weibull distributions has been studied in [18]. 
The same values of the scale parameter have given all possible types of shape 
failure rate functions and, for the different scale parameters, numerical 
computing is performed. Block et al. [5] has studied the mixture of two 
distributions with increasing linear failure rate functions.  

Section 2 concerns a model of the mixture of distributions. In Section 3, we 
consider numerical examples with technical data. 

2. The model of mixture distributions 

We consider a mixture of the lifetimes T1 and T2 with the densities f1(t), 
f2(t), the reliability functions R1(t), R2(t), the failure rate functions  λ1(t),  λ2(t)  
and weights p and 1 – p, where  0 < p < 1. The mixed density function is then 
written as 

 

 f(t) = p f1(t) + (1 – p) f2(t) 
 

and the reliability function is 
 

 R(t) = p R1(t) + (1 – p) R2(t) 

 

The failure rate function of mixture can be written as the mixture [3] 
 

 λ(t) = w(t) λ1(t) + (1 – w(t)) λ2(t) 
 

where w(t) = p R1(t)/R(t). Moreover, from [3], we have, under some mild 
conditions, that 

 

 )}t(),t(min{lim)t(lim 21
tt

λλ=λ
∞→∞→

 

 

In the following proposition, we give properties for the failure rate function 
of mixture. 

 
Proposition 1: For the first derivative of w(t), we have 
 

 w’(t) = w(t) (1 – w(t)) (λ2(t) – λ1(t)) 
 

Proposition 2: For the first derivative of λ(t), we obtain 
 

 λ’(t) = (1 – w(t)) ( –w(t) (λ2(t) – λ1(t))
2 + λ’2(t)) + w(t) λ’1(t) 
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Proposition 3: If R1(t) = exp(–λ1t ), for t ≥ 0, then 
 

 λ’(t) = (1 – w(t)) ( –w(t) (λ2(t) – λ1)
2 + λ’2(t)) 

 
Let  λ1(t) =  λ, λ2(t) = at + b, where a > 0, b ≥ 0. The cumulative failure rate 

function is 

 Λ2(t) = 
2

1
a t2 + b t 

and the reliability function 

 R2(t) = exp{–
2

1
a t2 – b t} 

Let h1(t) = λ’2(t) = a, h2(t) = w(t) ( λ2(t) – λ)2.  We will consider two cases: λ 
≤ b  and  λ > b. 

Case A:  λ ≤ b.  
In this case the function h2(t) is increasing from h2(0) = p(b – λ)2 to ∞. If  a 

≤ p(b – λ)2 then h2(t) > h1(t), and λ’(t) < 0. In this case  T ∈  DFR. 
If  a > p(b – λ)2 then the equation h2(t) = h1(t) has one solution. In this case, 

the failure rate λ(t) is unimodal. 
Case B:  λ > b. 
In this case, there is t1 = (λ – b)/a such that h2(t1) = 0. The function h2(t) is 

decreasing on (0, t1), and increasing on (t1, ∞). If  p(b – λ)2 ≥ a, then the equation 
h2(t) = h1(t) has exactly one solution t2 such that  t2 > t1. Hence,  λ(t) is 
unimodal.  

If  p(b – λ)2 < a, then the equation h2(t) = h1(t) has exactly two solutions t3 
and t4 such that 0 < t3 < t1  and  t1 < t4. In this case the failure rate function  λ(t)  
of the mixture is decreasing on (0, t3), increasing on (t3, t4), and decreasing on 
(t4, ∞). This failure rate function we describe as a modified unimodal. We 
showed the following:  

Proposition 4:  If p
ab − < λ ≤ b  or  λ ≥ p

ab +  then the failure rate 

function λ(t) of the mixture (1) is unimodal. 

3. Numerical examples  

In this section, numerical examples are given to illustrate this model. 
 
Example 1. We assume that a = 0.5, b = 1, λ = 2,  p ∈{ 0.125, 0.25, 0.375, 

0.5, 0.625 }. Fig. 1 shows a graphics of the failure rate function for this 
example. For p = 0.625, we have the modified unimodal failure rate function 
and for remaining values of p unimodal shape.  
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Fig. 1. The failure rate function for Example 1 
Rys. 1. Funkcja intensywności dla przykładu 1 

 
Example 2. In this example, we consider a real lifetime data. The object of 

the investigation is a real municipal bus transport system within a large 
agglomeration. The analysed system operates and maintains 210 municipal 
buses of various manufacturers and types. For investigation purposes, 35 buses 
of the same make were selected. The data set contains n = 2700 times between 
successive failures of the electrical system of the bus.  

By maximising the logarithm of the likelihood function for grouped data, we 
have estimated the values of the parameters a, b, λ and p of the reliability function     
 

                 R(t; a, b, λ, p) = p λ exp(–λ t) + (1 – p) exp(–0.5 a t2 – b t)  (2) 
 

Values of theses parameters are the following: a = 3.6476, b = 0.4495,  
λ = 0.06813, p = 0.6756. 

We prove Kolmogorow’s test of fit and compute the associated p–value,  
p–value = 0.14. The reliability function (2) sufficiently and precisely describes the 
empirical reliability function. Fig. 2 shows the failure rate function for Example 2. 
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Fig. 2.  The failure rate function for Example 2 
Rys. 2. Funkcja intensywności dla przykładu 2 
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4. Conclusions 

The basic idea discussed in this article is the application of the mixture of 
two standard distributions. In this paper, we study and attempt to determine the 
shape as well as the overall behaviour of the failure rate function of a mixture 
from two subpopulations, the exponential and Rayleigh distributions. This 
mixture can be used for the construction of the lifetime distribution of a 
technical object. The numerical example for the lifetime of an electrical system 
of a bus shows that a mixture can be useful for practical applications. 
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Mieszanina rozkładów jako rozkład czasów życia obiektu technicznego 

S t r e s z c z e n i e  

Rozkłady czasów życia są bardzo ważne w badaniach niezawodnościowych. Kształt 
dystrybuanty czasu życia można badać dokładnie i wtedy często nie można go aproksymować 
przez proste rozkłady. 

Pokazujemy, że jednomodalną funkcję intensywności uszkodzeń można otrzymać jako 
funkcję intensywności uszkodzeń mieszaniny rozkładu wykładniczego i rozkładu Rayleigha. 
W celu pokazania praktycznego znaczenia tego podejścia podano przykłady numeryczne. 
 




